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Intermittency inhibited by transport: An exactly solvable model
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Transport is incorporated in a discrete-time stochastic model of a system undergoing autocatalytic
reactions of the type A — 24 and A — 0, whose population field is known to exhibit spatiotemporal
intermittency. The temporal evolution is exactly solved, and it is shown that if the transport process
is strong enough, intermittency is inhibited. This inhibition is nonuniform, in the sense that, as
transport is strengthened, low-order population moments are affected before the high-order ones.
Numerical simulations are presented to support the analytical results.

PACS number(s): 05.40.+j, 64.60.Cn, 05.60.4+w

I. INTRODUCTION

Spatiotemporal intermittency is a phenomenon under-
lying the behavior of a wide class of stochastic systems,
ranging from population dynamics to turbulent fluids.
In intermittent systems the relevant fields are different
from zero in very localized regions of space and time,
whose evolution governs in consequence the behavior of
the whole system.

In fully developed viscous turbulence, for instance, the
vorticity field—as well as the enstrophy, i.e., the rate of
energy dissipation [1]—is concentrated along the vortex
lines [2], where it takes “quasisingular” values [3]. In
turbulent plasmas, the magnetic field becomes trapped
in vortices and, therefore, exhibits intermittency [4].

In population dynamics, spatial and temporal fluctua-
tions of birth and death rates determine a strongly non-
homogeneous population distribution [5]. It is charac-
terized by sharp, very scattered spikes, produced by the
accumulation of favorable birth events. These population
peaks can be annihilated by death, at the same time that
others are forming elsewhere. Although these peaks cor-
respond to very rare events, they dominate the evolution
of the system, as the main part of the total population
concentrates there.

The role of intermittency in fluctuating population dy-
namics suggests that it can also be relevant to the kinet-
ics of autocatalytic chemical reactions. At the opposite
length-scale extreme, this phenomenon has also been de-
tected in the matter distribution of the Universe [6].

An important question about the evolution of inter-
mittent systems—associated to the possibility of control-
ling the effect of accumulation of stochastic events—is
whether the development of intermittency can be inhib-
ited by a dissipative process, such as energy loss in the
case of turbulence, or diffusion in population dynamics.
This latter case was treated in detail in Ref. [7]. There,
it was shown that a population whose density n(r,t) is
governed by the reaction-diffusion equation

dn — D Vin = f(r,t) n, (1)
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where f(r,t) is a stochastic (Gaussian) process, devel-
ops the high spikes characteristic of intermittency for
small D. On the other hand, when diffusivity is very
large, the occurrence of intermittency depends on the
dimensionality of the system. For one-dimensional pop-
ulations, intermittency persists even in the limit D — oo.
In higher-dimensional systems, instead, this phenomenon
is partially limited—but not completely suppressed—by
diffusion.

The exactly solvable model presented in this paper de-
scribes an evolving population subject to a transport pro-
cess which can be assimilated to diffusion in an high di-
mensional space. When this process is sufficiently strong
intermittency is completely inhibited, but for intermedi-
ate strengths, a partial inhibition of the same type ob-
served for lower-dimensional diffusion occurs. Numerical
simulations validate the exact solution of the model, and
show that, eventually, fluctuations can strongly affect the
average population dynamics.

II. THE MODEL AND ITS SOLUTION

Consider a system of particles evolving on an N-site
lattice. Initially, there is exactly one particle at each
site, so that the total population equals N. Now, at each
time step ¢, the population of each site n(z,t) is exactly
doubled or completely annihilated, with probability 1/2
for each process:

n(z,t + 1) = R[n(z, t)]

_ J 2n(x,t) with probability 1/2, 9
10 with probability 1/2. (2)

Here, R is an operator describing birth and death events.
This model, originally proposed by Zeldovich [5] as a
paradigm of intermittency, represents also a chemical sys-
tem undergoing the autocatalytic reactions

A — 24,
A —»o0. (3)
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It is easy to see that, after ¢ time steps, the population
at a given site z is n(z,t) = 2* with probability 27¢, or
n(z,t) = 0, with the complementary probability 1 —27¢.
Thus, as times elapses, the population concentrates in
increasingly rare and high spikes, characteristic of inter-
mittency.

This strongly non-Gaussian distribution can be char-
acterized by its moments. The mth order moment of the
population field is defined as

(™) = % Yon(a, 0", (4)

s

and its average over realizations is therefore

(™) = 2N (m > 1), (5)

For m = 1, the mean particle number per site (n) equals
unity, and is independent of time. This indicates that
the average total population remains constant, the sys-
tem being in the threshold of a population explosion [8].
Higher order moments, instead, grow exponentially with
time, and their growth rate increases with the moment
order. This particular time dependence of the popula-
tion moments has been identified as a typical feature of
intermittency [5].

Consider now the following transport process. At each
time step, every particle in the system abandons its site
with probability o and hops to a different site, chosen
at random with homogeneous probability. Thus, in the
average, a fraction a of the population at each site leaves
its position and spreads uniformly over the remainder of
the lattice. Consequently, a system subject to this sole
process would evolve towards a spatially homogeneous
state.

This transport process can be associated to diffusion on
a lattice with high connection number, for instance, in a

]

_ IBt + 22111{1 “ﬁt]
n(t)—{ T

Here, the first line corresponds to the situation in which
no annihilation has occurred during the whole ¢-step evo-
lution. The second line represents the case in which the
last annihilation event has occurred k time steps ago.

The highest among these t + 1 possible values for the
site population at time t, npmax(t), is given by the first
line in (8). For a = 0, this is the only nonvanishing value
for n(t), and equals mmax(t) = 2. This reproduces the
evolution of the Zeldovich model, Eq. (2). For a # 0,
the large-time behavior is determined by the value of
B8=2(1—a). If 8 > 1 (a < 1/2), the exponential growth
persists, although the growth rate decreases as a varies
from 0 to 1/2. Asymptotically, these highest population
spikes behave as

1

T Bt (9)

Nmax(t) =

For 8 < 1 (a > 1/2), instead, nmax approaches a constant
level

high-dimensional space. On a low-dimensional lattice, it
is stronger—i.e., more effective—than diffusion. In fact,
considering for instance an initial condition in which the
population is concentrated on a single site, it can be seen
that, at small times, the mean square displacement grows
as t2. At large times, of course, the finite size of the
system implies that the population distribution becomes
homogeneous.

Averaging over realizations, the transport process can
be represented by an operator 7 such that

= T[n(z,t)] = (1 — a)n(z,t) + a(n). (6)

Here, (n) is the mean particle number per site. As well as
R, the operator T preserves the total number of particles,
so that (n) is a constant. According to the initial condi-
tion considered for the reaction model described above,
(n) will be hereafter put equal to unity.

The combination of reaction and transport can be car-
ried out in two ways, according to the order in which
these processes are applied at each time step. If trans-
port acts first, then reaction, their combined effect is de-
scribed by the operator R7T, which produces

n(t +1) = RT(n(t)
{,Bn(t) + 2a with probability 1/2,

n(z,t+1)

with probability 1/2, (7)

with § = 2(1 — a). For simplicity in notation, the spa-
tial variable has been omitted, the whole process being
local in space. The following analysis will concentrate in
this form of combining transport and reaction. The al-
ternative way—described by the operator 7 R—does not
present qualitative differences in the results. The evolu-
tion of the population at any site can be found by solving
the iterative linear stochastic equation (7). Taking into
account that n(0) = 1, this gives

with probability 1/2¢, )
with probability 1/2F+1,0 <k < ¢. (

f

2a

I 10
51’ (10)

nmax(t)
and this value decreases as a grows.

These results show clearly that the exponential growth
of the population per site can disappear if transport is
strong enough, more precisely, if the jump probability «
is greater than 1/2. This suggests that intermittency is
also inhibited for a > 1/2, as the evolution of the popula-
tion moments should reflect this limitation in the popula-
tion growth. The details in this process of intermittency
inhibition are studied in the next section.

III. EVOLUTION OF THE POPULATION
MOMENTS

As said before, the temporal behavior of the popula-
tion moments defined in (4) characterizes intermittency.
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In fact, the moments of a population distribution with
high and very scattered spikes increase as their order
grows. In an intermittent system with a more or less
homogeneous initial distribution, this trend is developed
as time elapses. If, on the contrary, high-order moments
remain relatively small, one can assert that the system
does not exhibit intermittency.

According to the results presented in Sec. II, the
reaction-transport model defined by Eq. (7) should be
intermittent for small values of a and become regular
when a reaches a certain critical value. In fact, it results
that the population moments exhibit a transition of the
type observed for n(t). However, the rather complicated
form of the exact solution (8) makes it difficult to write
down the detailed expression for the average moments
(n™).

It is instead relatively simple to give the asymptotic
large-time behavior of these moments. Assuming that
the mth order moment diverges for large times, the dom-
inant contribution is given by the first line in (8), and
one gets

rel(es) 2 (2] ()
(11)

In this expression, the temporal evolution affects only
the last factor. According to this, one sees that (n™)
effectively diverges only if ™/2 > 1, i.e., if

a<1—(-;—)T=am. (12)

The critical value a,,, which depends on the moment
order, establishes the upper bound for the exponential
divergence of (n™). It increases with m from as ~ 0.29,
and approaches 1/2 as m — oo.

This result indicates that the inhibition in the moment
growth is not uniform with respect to the moment order.
The transport process is able to control first the diver-
gence of low-order moments, and has to be strenghtened
to prevent the higher-order ones from increasing indefi-
nitely. Thus, according to the large-time behavior of the
population moments, three intervals for the jump prob-
ability o can be distinguished. For a < a3, the popu-
lation is absolutely intermittent, in the sense that all its
moments (n™) (m > 1) diverge exponentially.

For intermediate values of a, az < a < 1/2, the pop-
ulation at large times is characterized by a set of low-
order finite moments, whereas the other ones diverge.
One can say that intermittency has been partially in-
hibited. The limiting value of the finite moments can
be calculated from (8) as the contribution of the time-
independent part:

m 2a m m! —1)
w = (20‘_1) Z1'!(m—1-)! 2(_;1-' (13)

=0

Finally, for a > 1/2, the exponential growth of all the
population moments is prevented, in accordance with the

fact that the population at all sites remains finite as time
elapses. Intermittency has been completely inhibited.

IV. NUMERICAL RESULTS AND DISCUSSION

Numerical simulations make it possible to compare the
theoretical results presented above—which correspond
to averages over realizations—with the actual evolution
of the system. These simulations have been performed
along the lines described in Ref. [9].

Since the average evolution is local in space, the rel-
evant parameter defining the size Ngs of the numerical
simulations is the product of the number of lattice sites
N times the number of realizations Ng, Ngs = NgN. The
results presented here correspond to Ns ranging from 107
to 108, for various values of the jump probability a.

Figure 1 shows the evolution of the population mo-
ments (n™) for m = 1 to 4, with @ = 0.1. This value
of the jump probability corresponds to completely devel-
oped intermittency, so that the moments are expected
to grow exponentially as time elapses. In the figure, full
lines correspond to the numerical simulations, whereas
dashed lines represent the theoretical prediction (11).
Both results show a good agreement up to a certain crit-
ical time t. = 23. From then on, fluctuations play a rel-
evant role in the evolution of the numerical system, and
the actual evolution differs appreciably from the theoret-
ical result. The critical time t. grows as the simulation
size Ng is increased, so that the average results are ex-
pected to correctly describe the evolution over the whole
time range only for an infinite system, N — oo.
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FIG. 1. Population moments from first to fourth order, for
a jump probability a = 0.1 (intermittency developed). The
initial population is homogeneous, with one particle per site.
Full lines represent the results of numerical simulations for
Ns = 107 on a 10*-site lattice, and dotted lines stand for the
corresponding theoretical results.
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FIG. 2. As in Fig. 1, for a = 0.6 (intermittency inhibited).

On the other hand, when intermittency is absolutely
inhibited, the theoretical prediction (13) gives a good
description for arbitrarily long times, and the effect of
fluctuations seems to be negligible. This can be clearly
seen in Fig. 2, which displays numerical and theoreti-
cal results for a = 0.6. Observe that, after four or five
time steps, all the moments have practically reached their
asymptotic value.

In the transition zone, as < a < 1/2, the system
proves to be particularly susceptible to fluctuations. Sim-
ulations performed for @ = 0.35, shown in Fig. 3, required
to take Ns = 108—one order of magnitude higher than
for Figs. 1 and 2. For this value of the jump probabil-
ity, (n?) should asymptotically approach a finite value,
whereas all the higher order moments should diverge ex-
ponentially. In spite of this relatively high simulation size
the critical time for the fluctuations to become relevant
is t, ~ 17. After this time, both (n3) and (n*) show a
strongly irregular behavior. Meanwhile, the second-order
moment grows very slowly towards the asymptotic value
predicted by Eq. (13).

The following features in the behavior of the exactly
solvable model analyzed here deserve to be pointed out.
o The transport process—which can be seen as a version
of diffusion on a many-dimensional lattice with very high
connectivity—is able to completely inhibit the develop-
ment of intermittency induced by birth and death (or
autocatalytic chemical) events, if it is sufficiently strong.
Since it has already been proved that diffusion cannot
eliminate intermittency in less than four dimensions (7],
this result suggests the existence of a critical spatial di-
mension d.. Such inhibition should occur in systems with
d > d.. This critical dimension could be infinite.

e When transport is weak, the maximum particle number
per site grows exponentially with time. As transport is
strengthened, at a certain point this growth is suddenly
suppressed. However, the process of intermittency inhi-
bition begins before the occurrence of this sudden tran-
sition and proceeds gradually, limiting first the growth
of low-order population moments. At the critical point
in which the large-time divergence of the maximum pop-
ulation is suppressed, the growth of all moments is also
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FIG. 3. Asin Fig. 1, for « = 0.35 (transition zone). These
simulations correspond to Ns = 108,

limited. This gradual inhibition has been also detected
in finite-dimensional diffusion. In the limit of large dif-
fusivity, in fact, low-order moments of three-dimensional
populations evolve towards finite values, although inter-
mittency cannot be definitively eliminated [7].

e In this model, the development of high spikes in the
population distribution is due to the accumulation of fa-
vorable birth events. Thus the system evolution is es-
sentially driven by fluctuations. For a system of a given
size, the effects of stochastic events are expected to pre-
vail after a certain time, during which they accumulate
to become relevant. In this transient, the system is well
described by the average results obtained here. This fact
is apparent in the numerical simulations, when transport
is not strong enough to inhibit intermittency. An ap-
propriate description of the regime in which fluctuations
prevail, instead, would require a more detailed analysis
of their statistical properties. On the other hand, if inter-
mittency has been suppressed, fluctuations do not play
a relevant role and the average results are correct at all
times. This would be also the case—even in the intermit-
tent regime—for an infinite system, where fluctuations
are naturally negligible.

Although the outlined conclusions apply to the specific
model presented here, they may be characteristic of the
interplay between certain transport processes and the de-
velopment of intermittency. Therefore, the model could
serve as a paradigm of many fluctuation-driven systems
found in actual applications—such as in population dy-
namics [7] and in plasma physics [10]—and become par-
ticularly relevant when the accumulation of fluctuations
leads to catastrophic effects [11].

ACKNOWLEDGMENTS

Useful discussions with Professor A.S. Mikhailov are
gratefully acknowledged. The author is member of Con-
sejo Nacional de Investigaciones Cientificas y Técnicas,
Argentina.



[1] J. Weiss, Physica D 48, 273 (1991).

[2] T. Sanada, Prog. Theor. Phys. 87, 1323 (1992).

[3] M. Farge and M. Holschneider, Europhys. Lett. 15, 737
(1991).

[4] Ya.B. Zeldovich, Zh. Eksp. Teor. Fiz. 32, 552 (1957)
[Sov. Phys. JETP 4, 460 (1957)].

[5] Ya.B. Zeldovich et al., Usp. Fiz. Nauk 152, 3 (1987)
[Sov. Phys. Usp. 30, 353 (1987)].

(6] S.F. Shandarin and Ya.B. Zeldovich, Rev. Mod. Phys.

49 INTERMITTENCY INHIBITED BY TRANSPORT: AN... 2783

61, 185 (1989).
[7] A.S.Mikhailov, Physica A 188, 367 (1992), and reference
therein.
[8] A.S. Mikhailov, Phys. Rep. 184, 307 (1989).
[9] D.H. Zanette, Phys. Rev. A 46, 7573 (1992).
[10] H. Wilhelmsson, J. Math. Phys. 29, 1776 (1988);
Phys. Rev. A 38, 2667 (1988).
[11] Ya.B. Zeldovich et al., The Almighty Chance (World Sci-
entific, Singapore, 1990).



